手机阅读

人工智能在生活中应用的论文2 人工智能在生活中应用的论文200字(4篇)

格式:DOC 上传日期:2023-01-03 16:07:11 页码:13
人工智能在生活中应用的论文2 人工智能在生活中应用的论文200字(4篇)
2023-01-03 16:07:11    小编:ZTFB

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

关于人工智能在生活中应用的论文2(推荐)一

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与n形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机eniac做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(niz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(lt)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(gps),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的nml非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

关于人工智能在生活中应用的论文2(推荐)二

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与n形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机eniac做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(niz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(lt)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(gps),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的nml非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的`突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

关于人工智能在生活中应用的论文2(推荐)三

面对信息发展的新时代,利用云计算、大数据、物联网、移动互联网、人工智能等信息技术,不断改善中小学信息技术基础设施,营造网络化、数字化、个性化、终身化的智慧教育环境,扩大优质资源覆盖面,推进信息技术与教育教学、管理的深度融合,提高教育教学质量,提升教育治理水平,促进教育公平和优质均衡发展,培养具有较高思维品质和较强实践能力的创新型人才。

智慧校园围绕智慧环境、数字资源、信息素养、融合创新、支撑保障、特色发展六个方面开展建设。

xx省中小学智慧校园建设指导意见 

大力推进教育信息化建设,积极发展网络教育,深入实施教育信息化2.0行动计划,全面提升智慧教育建设水平,根据教育部《教育信息化“十三五”规划》《xx省“十三五”教育发展规划》等文件精神,结合我省中小学教育信息化建设发展实际,决定在全省中小学推进智慧校园建设,特制定《xx省中小学智慧校园建设指导意见》。

一、建设目标

面对信息发展的新时代,利用云计算、大数据、物联网、移动互联网、人工智能等信息技术,不断改善中小学信息技术基础设施,营造网络化、数字化、个性化、终身化的智慧教育环境,扩大优质资源覆盖面,推进信息技术与教育教学、管理的深度融合,提高教育教学质量,提升教育治理水平,促进教育公平和优质均衡发展,培养具有较高思维品质和较强实践能力的创新型人才。

二、建设原则

坚持以人为本。智慧校园建设要以服务为导向,要为教师、学生、家长和社会公众提供优质的信息化环境和资源服务,提高学生信息素养、创新思维和实践能力,促进教师专业发展、提高教育质量,提升育人水平。

坚持应用驱动。智慧校园建设要坚持以问题为导向、以应用为核心,从学校发展、师生发展、教育改革发展的实际需求出发,统筹规划、分步实施、有序推进。要通过深化应用释放信息技术对教育教学、管理和服务的促进作用,以应用驱动各项建设工作。

坚持融合创新。智慧校园建设要进一步深化信息技术与教育教学和管理的融合创新,不断提升教育信息化的效能。要强化信息技术对教育教学改革的服务与支撑,聚焦教育改革发展过程中困扰教学、管理的核心问题和难点问题,以创新促发展,推动教育理念、教育服务供给方式、教育教学模式和学习方式的变革。

坚持示范引领。智慧校园建设要坚持统筹规划、以点带面、示范引领、分步实施。各地要根据实际情况,在智慧教育环境提升、数字资源共建共享、融合创新及人才培养等方面形成创新性、示范性应用案例,建设具有本地特点的智慧校园。充分发挥示范辐射作用,推动全省中小学智慧校园建设水平的整体提升。

三、建设内容

智慧校园围绕智慧环境、数字资源、信息素养、融合创新、支撑保障、特色发展六个方面开展建设。

(一)智慧环境

1.校园网络。利用互联网、移动互联网、物联网等信息技术升级改造校园网络环境,进一步提升宽带网络校校通水平,千兆进校、百兆进班。无线网络覆盖主要教学、办公、生活等场所。支持视频点播、电视直播,电视电话会议及语音、图像等各类信息的多媒体运用。采用智能化设备对装备使用情况进行自动追踪、管理和控制。长沙航天和一电子公司专业生产销售有线高清数字电视、iptv网络互动电视、卫星电视系统工程设备。

⒉信息终端。拥有支撑教学、学习和交互的智能终端及配套设备,满足信息化环境下教学科研和学习活动需求。建有智能卡系统,提供校内消费、图书借阅、门禁管理、考勤管理、宿舍管理、访客管理等应用服务。学校主要公共服务区域(图书馆、活动室、行政楼、食堂、宿舍等)配置公用信息终端,为师生提供各类信息化服务。

3.智慧教室。教室配置多媒体交互设备,建设支持网络教学研究的录播教室、支持教学行为数据采集和分析的智慧教室和学习体验中心。能实现教室、电子设备的集中智能化管控。依托区域教育云和教学资源平台、智能学科辅助工具以及在线学习社区等,实现课堂教学云端一体化。

4.信息安全。建立网络信息安全制度,根据实际需要配备网络安全设备,配置防火墙、入侵检测系统、防病毒系统、漏洞扫描系统、有害信息过滤系统和web应用防火墙等网络安全系统。配备统一上网管理系统,定期开展网络与信息安全等保测评工作,确保网络和信息安全。

5.智能安防。智能安防系统覆盖学校主要场所,与区域行政部门数据同步,与当地公安部门安全防范系统互联互通。能实现校园视频监控、入侵报警、紧急呼叫求助报警、电子巡更、学生出入控制、访客管理、消防报警、紧急广播与疏散等智能化安防管理。

(二)数字资源

1.资源开发。通过自建、引进、合作、共享等多种方式配备学生学习资源、教师教学资源、教师专业发展与教育科研资源和数字校本特色资源。电子期刊、电子图书、视频和音频等数字资源能满足教学、科研和教师进修、学生成长的需要。

2.资源应用。实现优质资源班班通,教师能有效运用优质资源开展课堂教学,能通过网络学习空间开展备课授课、家校互动、网络研修、学习指导。学生能通过网络学习空间进行预习、作业、自测、拓展阅读、网络选修课等学习活动。

3.资源共享。建立资源共建共享机制,实现校内教学资源共建共享,并通过教育资源平台实现网络课程或特色资源区域共享,鼓励师生在教育资源平台展示、共享优秀数字资源。

(三)信息素养

1.学生发展。学生具备良好的信息素养,能利用网络获取、储存、评价、加工和应用数字化学习资源,能利用各种媒体终端进行随时随地的学习、交流和分享,能在教师的指导下运用信息技术灵活开展自主学习、合作学习与探究学习。同时注重自制,不沉迷网络。

2.教师发展。教师具备较高的信息素养,能进行信息技术环境下的教学设计,能获取、加工和集成教学资源支持课堂教学,能利用网络教学平台开展混合式教学、参与校本和区域教研活动,能利用信息技术对教学对象、教学资源、教学活动、教学过程进行有效管理和评价。

3.信息化领导力。校长具有较高的信息素养,能根据区域信息化发展目标,明确建设思路,具有组织、管理和评价能力。能运用信息技术手段开展学校各项管理,有效推进基于大数据的教育治理和绩效评价。

(四)融合创新

1.智慧教学。教师利用信息化备课支撑平台和数字资源进行电子备课或网络协同备课。综合运用学科教学工具、网络空间等开展智慧课堂教学,优化教学流程,创新教学模式,构建自主、合作、探究的教与学方式。能采集、汇聚、整理、分析教与学过程的大数据,实现师生教与学双向适时反馈。

2.智慧管理。依托国家、省级教育管理公共服务平台,加强校园智慧管理,推动互联互通及数据共享,实现办公、教务、教学、学生、后勤、安全等智能化管理。

3.智慧服务。提供基于pc和移动端的家校互动平台服务,帮助家长实时了解学生学习、生活等情况,进行有效的家校互动交流。同时,利用信息技术为家庭、社区和其他学校提供教师课程和综合实践活动等社会化公益服务。

(五)支撑保障

1.组织领导。学校成立以校长为组长的智慧校园工作领导小组,制定智慧校园建设规划并按计划推进实施。

2.机构人员。学校有专门的机构或部门负责教育信息化工作。配备专职管理人员,专门负责教育信息化工作。每门学科配备教师负责推进信息技术与学科教学的融合创新应用。

3.经费保障。财政部门安排教育信息化经费,用于学校信息化基础设施和重点项目建设。学校从生均公用经费中提取一定比例用于信息化教学资源更新和日常运维。开展校企等合作,建立多元化经费投入机制,确保智慧校园建设可持续发展。

4.制度建设。学校建立教育信息化运营、管理和激励制度。

(六)特色发展

智慧校园建设重在深化应用、融合创新,鼓励各校大胆探索、开拓创新,在智慧校园前沿研究、特色应用、突出成果、体制机制建设等方面打造亮点,促进智慧校园建设特色发展。

四、组织实施

(一)智慧校园建设是系统工程,需省、市、县、校四级联动,教育、经信、财政部门协同推进建设。各地要将智慧校园建设作为智慧教育和智慧城市建设的重要内容,并作为“十三五”教育信息化建设和教育现代化建设的重点工作,纳入本级政府重点民生实事项目,统筹规划、统一部署、大力推进。

(二)省教育厅、省经信委、省财政厅负责智慧校园建设工作制度设计。制定下发全省智慧校园建设指导意见,召开建设推进会,组织开展督导评估认定工作,评选省级智慧校园示范校。统筹安排智慧校园建设奖补经费,用于扶持经济薄弱的市、县和学校开展智慧校园建设,奖励省级智慧校园示范校。省教育网络安全和信息化领导小组办公室负责智慧校园建设的日常具体工作。

(三)各市、县(市、区)教育、经信和财政部门要成立智慧校园建设工作领导小组,召开专题会议,研究部署智慧校园建设工作;要制定智慧校园建设规划,明确时间表和路线图,在政策、经费、人员等方面提供强有力的保障。

(四)各地教育信息化机构要会同相关部门和单位,在当地教育、经信和财政部门的领导下,建立统一领导、分工负责、各司其职、协同推进的工作机制,大力推进智慧校园建设与管理工作。

(五)学校是智慧校园建设主体,要将智慧校园建设工作作为“一把手”工程,将智慧校园建设作为学校促进教育公平、提高教育质量、提升办学水平的重点工作和重要抓手。要制订智慧校园建设方案,集中人力、物力和财力,创新工作机制,持续推进智慧校园建设与应用工作。长沙航天和一电子公司专业的校园电视系统设备供应商,提供完整的校园数字高清电视系统,iptv网络电视系统,卫星电视系统整体解决方案及全套配套设备。

(六)智慧校园评估认定工作由教育、经信、财政部门联合开展,按照学校申报、县(市、区)审核、市评估、省抽查的程序进行。省教育厅、省经信委、省财政厅定期开展抽查验收,评选省级智慧校园示范校并给予奖励。

关于人工智能在生活中应用的论文2(推荐)四

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称ai,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5g技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:

第一教材的缺乏,

第二师资的缺乏,

第三课程实施的场地缺乏,

第四怎么教的问题。

在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,

针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;

针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;

针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程——空间——活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,

分为三个阶段:

第一阶段大班stem基础教学,

第二轮实践教学建立社团校队,

第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

您可能关注的文档