手机阅读

2023年风力发电机课程设计 风力发电课程设计方案(5篇)

格式:DOC 上传日期:2023-04-03 09:54:08 页码:12
2023年风力发电机课程设计 风力发电课程设计方案(5篇)
2023-04-03 09:54:08    小编:zdfb

方案是从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划。那么我们该如何写一篇较为完美的方案呢?下面是小编为大家收集的方案策划范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

风力发电机课程设计 风力发电课程设计方案篇一

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。风是一种潜力很大的新能源,十八世纪初风力发电图,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。利用风力发电的尝试,早在二十世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下

风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。

优点

1、清洁,环境效益好;

2、可再生,永不枯竭;

3、基建周期短;

4、装机规模灵活。

缺点

1、噪声,视觉污染;

2、占用大片土地;

3、不稳定,不可控;

4、目前成本仍然很高。

5、影响鸟类。

风力发电机课程设计 风力发电课程设计方案篇二

1.风力发电机主机及风叶:主要发电核心,通过风叶旋转带动风力发电机转子旋转切割磁力线,从而把旋转动能转化成电能。

2.控制器:通常风力发电机发出的电为不稳定三相交流电,如果直接使用会造成用电器的损坏,控制器的作用除了把风力发电机发出的不稳定三相电通过整流输出可以给蓄电池充电的直流电,同时控制器也实时检测风力发电机与蓄电池的电压,避免风力发电机在大风时电压过高导致损坏,也防止蓄电池由于过充导致损坏。

3.蓄电池:储存风力发电机发出的电力以便在需要时使用。

4.逆变器:把蓄电池里的直流电转换成交流电供给交流负载使用。(直流负载不需要逆变器,可以直接接蓄电池使用)

5.塔架:帮助支撑及固定风力发电机到地面或任何足够牢固能安装风力发电机的介质。

6.太阳能板(选配):由于风力资源属于不稳定的自然资源,在部分地区单单依靠风能发电不能完全满足客户的用电需求。此时客户可以按照需求结合太阳能发电,把系统打造成风光互补系统,科学使用各种自然资源有效增加系统发电量。

风力发电机课程设计 风力发电课程设计方案篇三

引言:我国是一个风能资源比较丰富的国家据探明风能理论储量为32.26亿kw,而陆地可开发利用风能为2.53亿kw,近海可利用风能为7.5亿kw,居世界前列.随着我国经济的持续快速增长,对能源的需求与传统化石能源对环境污染的矛盾越来越突出,发展新 的清洁可再生能源成为解决矛盾的有效方法.在目前许多新能源的开发利用中,风力发电凭借其技术的优势和单机容量的高速增长使得风能成为目前世界上增长速度最快最具有竞争力的可利用新能源。[1]本文主要介绍风电场并网对电力系统的影响。

一、对调峰、调频与备用的影响

大规模风电并网的重要制约因素是电网可为风电提供的调峰能力,必须利用全网的调峰、调频能力进行统一平衡,时,常规机组减少出力为风电提供空间。电接入电网功率。风电的反调峰特性,例如,东北电网受冬季火电机组供热影响,反调峰特性,使得系统调峰异常困难,进入制风电出力,最多时限制近

二、对电压与无功功率控制的影响风电机组类型不同,无功功率特性差异很大。早期的风电场多采用的是固定转速风电机组—异步发电机,吸收系统无功且无功不可控,功控制。风机的无功功率不可控,必然导致电压忽高忽低,无功补偿装置频繁投切。风电对系统的电压要求很高(电压偏差不得超过应用的变速风电机组—双馈异步电机和直驱风电机组在1.0,不向系统吸收无功,解决了部分无功电压问题,但不具备恒电压调节能力。区域性无功电压调节问题还需要通过安装svc等动态无功补偿装置、输电通道动态无功补偿设备以及频繁投切的低容低抗来实现。[5]风电功率波动影响主网潮流分布,同时电压波动使无功补偿设备频繁投切。风电场的利用小时数很低一般在电场送出线路长时间会处于轻载状态,电压必然偏高,低抗将长时间投入运行。

三、对电能质量的影响有相当一部分风电机组直接并入配电网,由此带来的电能质量问题尤为突出。电压波动和闪变:风力发电机组大多采用软并网方式,但是在启动时仍会产生较大的冲击电流。当风速超过切出风速时,乎同时动作,这种冲击对配电网的影响十分明显。都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。电给系统带来谐波的途径主要有两种。接和电网相连的固定转速风电机组,定的谐波,不过过程很短,发生的次数也不多,通常可以忽略。但是对于变速风电机组则不然,变速风电机组通过整流和逆变装置接入系统,谐波的范围内,则会产生很严重的谐波问题,逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,行中,曾经观测到风电场出口变压器的低压侧产生大量谐波的现象。才能保证全额接受风电和电网安全稳定运行。风电功率具有不确定性,将导致负荷峰谷差增大,使得系统调峰异常困难。火电机组固有的调峰能力大为下降,2008 年冬季以后,多次因低谷调峰问题被迫限400 mw。[6]

需后期改造以配备相应的补偿装置来进行无10%),但它本身就是一个无功干扰源。目前普遍—永磁同步机能够保证风机功率因数avc 等系统手段来实现。风电场提高电压控制手段一般通过2 100~2 400 h,机组出力小于额定功率

如果整个风电场所有风机几不但如此,风速的变化和风机的塔影效应一种是风力发电机本身配备的电力电子装置。软启动阶段要通过电力电子装置与电网相连,如果电力电子装置的切换频率恰好在产生随着电力电子器件的不断改进,当风电功率增加5%的概率最大,所以风[6]谐波污染:风这一问题也在[4][2]

[5]25 对于直会产生一在实际运系统调峰裕度必须大于风加之风电的风机会从额定出力状态自动退出运行。

四、对发电计划与调度的影响

风能的不可控性使得对风电不可能像对其他传统电源一样可以进行可靠预测。风电场并 网以后,电网的可用调峰容量减去用于平衡负荷波动的备用容量后,剩余的可用调峰容量都能够用于为风电调峰,但如果整个电网可用于风电的调峰容量有限,则风电场的实际运行就会受到一定的限制,在电网无法完全平衡风电场的功率波动时,需要限制风电注人电网的功率。[4]由于当前我国电网中风电的比例不高,因此在电网调度工作中一般不把风电纳入电网调度.且由于尚未开展风电功率预测的研究与应用,因此风电功率的波动对于电网而言完全是随机的,最严重的情况就等于整个风电装机容量大小的风电功率在短时间内的波动,虽然发生这种情况的概率较小,但是在实际运行中仍无法排除发生这种情况的可能性由于系统需要有与风 电场额定容量相当的备用容量,在风停时替代风电场,这使得风电上网成本增加。目前,我国相关省区电网调度根据风由各省自行平衡,基本上不安排风电的发电调度计划。

结语

随着气候的变迁,环境的恶化资源的短缺发展新的清洁可再生能源已成为一种趋势合理地开发和利用风能成为解决矛盾的一种方法,的成果,对我国电网进一步的改造和开发新技术以支撑风电的大规模并网.的快速稳步发展。

参考文献:

[1]裴哲义,董存,辛耀中。我国风电并网运行最新进展[2]张洋,风电场无功补偿容量及其控制方法的研究[3]陈向民,姚强。风力发电前经济技术分析[4]胡斌,杨鹏举。关于风电接入系统若干问题的思考[5]吴雄飞。大型风电并网系统电压稳定性研究[6]电监会.我国风电发展情况 调研报告

只要结合我国的实际情况,[j] 新能源 [d].长春[j] 科技创新导报[j] 中国电力教育[j ]宣称供电公司[d].北京 :国家电力监管委员会借鉴国外已有以支持国民经济 第11期

:东北电力大学,2010 no.35

2010,2005. 36期 2009.

电场实际发电出力对网内其他电厂出力进行调整,年第,

风力发电机课程设计 风力发电课程设计方案篇四

风力发电机原理

是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

现状:风力发电正在世界上形成一股热潮,风力发电在芬兰、丹麦等国家很流行;我国风能资源十分丰富,我国也在西部地区大力提倡,管理滞后影响风电“进步”首先,我国对风能资源的普查、评价、规划管理严重滞后,资源分散,缺少整合,没有形成全国统一的国家级风电产业研机机构,缺少对产业资源的集中和整合。

其次,单位kw造价高,火电平均4500元/kw,风电平均每8000~9000元/kw,平均造价高于火电。火电平均电价0.36元/千瓦时,风电平均电价为0.56元/千瓦时,在我国南方地区电价,还要略高于北方地区。影响电网并网发电的积极性。第三,目前市场和产业化基本上没有形成,风电机组和系统设计技术、设备性能、效率以及技术工艺水平与欧洲相比存在很大差距。国产风电关键部件,如液压系统、联合器、电控等可靠性差,技术不够成熟。

改善“环境”加快风电步伐

前景:它的优势不需要燃料、不占耕地、没有污染,运行成本低。;风力发电产业发展前景非常广阔,为风力发电没有燃料问题,也不会产生辐射或空气污染。

我国风能资源十分丰富,它是一种干净的可再生能源;风力发电产业发展前景非常广阔,优缺点:它的优势不需要燃料、不占耕地、没有污染,运行成本低,我国风力资源丰富,缺点,效率低,造价昂贵,技术有待改进,管理不够完善

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;

机头的转子是永磁体,定子绕组切割磁力线产生电能。风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。机械连接与功率传递水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型

风力发电机课程设计 风力发电课程设计方案篇五

1.风力发电发展的现状

1.1世界风力发电的现状

近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增长速度最快的一种。今年来欧洲、北美的风力发电装机容量所提供的电力2成为仅次于天然气发电电力的第二大能源。欧洲的风力风力发电已经开始从“补充能源”向“战略替代能源”的方向发展。

到2008年,世界风能利用嘴发达的国家是德国、美国和西班牙,中国名列世界第四位。丹麦是世界上使用风能比例最高的国家,丹麦能源消费的1/5来自于风力。

欧洲在开发海上风能方面也依然走在世界前列,其中丹麦、美国、爱尔兰、瑞典和荷兰等国家发展较快。尤其是在一些人口密度较高的国家,随着陆地风电场殆尽,发展海上风电场已成为新的风机应用领域而受到重视。丹麦、德国、西班牙、瑞典等国家都在计划较大的海上风电场项目。目前海上风电机组的平均单机容量在3mw左右,最大已达6mw。世界海上风电总装机容量超过80万千瓦。

有余风力发电技术已经相对成熟,因此许多国家对风发电的投入较大,其发展较快,从而使风电价格不断下降。若考虑环保及地理因素,加上政府税收优惠政策和相关支持,在有些地区风力发电已可与火力发电等展开竞争。在全球范围内,风力发电已形年产值超过50亿美元的产业。

1.2我过风力发电的发展现状

我国风力发电从20世纪80年代开始起步,到1985年以后逐步走向产业化发展阶段。

自2005年起,我国风电规模连续三年实现翻倍增长。风电新增容量每年都增加超过100%,仅次于美国、西班牙,成为世界风电快速增长的市场之一。根据国家能源局2009年公布的统计数据,截止2008年底,我国风电装机容量已达1271万千瓦,居世界第4位,但是风电在我国整个电力能源结构中所占的比重仍然比较低。

我国将在内蒙古、甘肃、河北、吉林、新疆、江苏沿海等省区建设十多个百万千瓦级和几个千瓦级风电基地。根据目前国内增长趋势,预计到2020年,中国风电总装机容量将达到1.3亿~1.5亿千瓦。风力发电机

2.1恒速恒频的笼式感应发电机

恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。

恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。

2.2变速恒频的双馈感应式发电机

变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。

双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。

双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。

2.3变速变频的直驱式永磁同步发电机

变速变频式风力发电系统,特点是在有效风速范围内,发电机组的转速和发电机组定子侧产生的交流电能的频率都是变化的。因此,此类风力 需要在定子侧串联电力变流装置才能实现联网运行。通常该类风力发电系统中的发电机组为永磁同步发电机组。

直驱式风力发电机组,风轮与发电机的转子直接耦合,而不经过齿轮箱,“直驱式”因此而得名。由于风轮的转速一般较低,因此只能采用低速的永磁式发电机。因而无齿轮箱,可靠性高;但采用低速永磁发电机,体积大,造价高;而且发电机的全部功率都需要交流器送入电网,变流器的容量大,成本高。

如果将电力变流装置也算作是发电机组的一部分,只观察最终送入电网的电能特征,那么直驱式永磁同步发电机组也属于变速恒频的风力发电系统。

3介绍相关风力发电控制技术

3.1风力发电控制系统的目的由于风力发电机组是复杂多变量非线性系统,具有不确定性和多干扰等特点。风力发电控制系统的基本目标分为4个层次:保证可靠运行,获取最大能量,提供良好电力质量,延长机组寿命。控制系统实现以下具体功能:

(1)运行风俗范围内,确保系统稳定运行。

(2)低风速时,跟踪最优叶尖速比,实现最大风能捕获。

(3)高风速时,限制风能捕获,保持风力发电机组的额定输出功率。

(4)减少阵风引起的转矩峰值变化,减少风轮机械应力和输出功率波动。

(5)控制代价小。不同输入信号的幅值应有限制,比如桨距角的调节范围和变桨距速率有一

定限制。

(6)抑制可能引起机械共振的频率。

(7)调节机组功率,控制电网电压、频率稳定。

3.2风力发电控制系统

除了风轮和发电机这两个核心部分,风力发电机组换包括一些辅助部件,用来安全、高效的利用风能,输出高质量的电能。

(1)传动机构

虽说用于风力发电的现代水平轴风力机大多采用高速风轮,但相对于发电的要求而言,风轮的转速其实并没有那么高。考虑到叶片材料的强度和最佳叶尖速必的要求,风轮转速大约是18~33r/min。而常规发电机的转速多为800r/min或1500r/min。

对于容量较大的风电机组,由于风轮的转速很低,远达不到发电机发电的要求,因而可以通过齿轮箱的增速作用来实现。风力发电机组中的齿轮箱也称增速箱。在双馈式风力发电机组中,齿轮箱就是一个不可缺少的重要部件。大型风力发电机的传动装置,增速比一般为40~50。这样,可以减轻发电机质量,从而节省成本。

也有一些采用永磁同步发电机的风力发电系统,在设计时由风轮直接驱动发电机的转子,而省去齿轮箱,以减轻质量和噪声。

对于小型的风电机组,由于风轮的转速和发电机的额定转速比较接近,通常可以将发电机的轴直接连到风轮的轮毂。

(2)对风系统(偏航系统)

自然界的风方向多变。只有让风垂直地吹向风轮转动面,风力机才能最大限度地获得风能。为此,常见的水平轴的风力机需要配备调向系统,使风轮的旋转面经常对准风向。

对于小容量风力发电机组,往往在风轮后面装一个类似风向标的尾舵,来实现对风功能。对于容量较大的风力发电机组,通常配有专门的对风装置——偏航系统,一般由风向传感器

和伺服电动机组合而成。大型机组都采用主动偏航系统,即采用电力或液压拖动来完成对风动作,偏航方式通常采用齿轮驱动。

一般大型风力机在机舱后面的顶部有两个互相独立的传感器。当风向发生改变时,风向标登记这个方位,并传递信号到控制器,然后控制器控制偏航系统转动机舱。

(3)限速装置

风轮转速和功率随着风速的提高而增加,风速过高会导致风轮转速过高和发电机超负荷,危及风力发电机组的运行安全。限速安全机构的作用是使风轮单位转速在一定的风速范围内基本保持不变。

(4)液压制动装置

机组的液压系统用于偏航系统刹车、机械刹车盘驱动,当风速过高时使风轮停转,保证强风下风电机组安全。

机组正常时,需维持额定压力区间运行。液压泵控制液压系统压力,当压力下降至设定值后,启动油泵运行,当压力升高至某设定值后,停泵。

4风力发电技术发展趋势的展望

4.1风力发电的发展方向

风力发电技术是目前可再生能源利用中技术最成熟的、最具商业化发展前景的利用方式,也是本世纪最具规模开发前景的新能源之一合理利用风能,既可减少环境污染,有可减轻目前越来越大的能源短缺给人类带来的压力。

未来风力发电技术将向着以下几个方向发展。

(1)单机容量大。主流的新增风力机的单机容量将从750kw~1.5mw向2mw甚至更大的容量发展。目前世界上单机容量最大的风机,为5mw风力发电机,海上风力发电的6mw风电机组也已研制成功。

(2)风电场规模增大。将从10mw级向100mw、1000mw级发展。

(3)从陆地向海上发展。

(4)生产成本进一步降低。

4.2未来风力发电的展望

据专家们测估,全球可利用的风能资源为200亿千瓦,约是可利用水力资源的10倍。如果利用1%的风能能量,可产生世界现有发电总量8%~9%的电量。“风力12”、欧洲风能联合会、能源和发展论坛以绿色和平组织于2002年联合发表了一篇报告,以上述估计值作为基础,制定了风能的目标:到2020年,风力发电将占到全球发电总量的12%。为了达到这个目标,需要建立总容量大约为1260gw的风能装置,每年可发电3000tw·h左右。这相当于现在欧盟的用电量。世界风能协会预计,从世界范围来看,预计2020年,风电装机容量会达到1231gw。年发电量相当于届时世界电力需求的12%,与上述报告的结论一致。风电会向满足世界20%电力需求的方向发展,相当于今天的水电,有研究显示到2040年大致可以实现这一目标。届时将创造179万个就业机会,风电成本下降40%,减少排放100多亿吨二氧化碳。因此,在建设资源节约型社会的国度里,风力发电已不再是无足轻重的补充能源,而是最具有商业化发展前景的新兴能源产业。

您可能关注的文档