手机阅读

最新热力学第二定律的心得体会简短(通用11篇)

格式:DOC 上传日期:2023-11-23 13:42:56 页码:8
最新热力学第二定律的心得体会简短(通用11篇)
2023-11-23 13:42:56    小编:ZTFB

撰写心得体会可以促进我们对自己和他人行为的审视,反思自身的优点和不足,提高个人能力。写心得体会时要注重实践和经验的结合,给出具体的案例和实例支持。以下是一些精心挑选的心得体会范文,希望能给大家提供思路和启示。

热力学第二定律的心得体会简短篇一

2、初步运用力的平行四边形法则求解共点力的合力;。

3、会用作图法求解两个共点力的合力;并能判断其合力随夹角的变化情况,掌握合力的变化范围。

能力目标。

1、能够通过实验演示归纳出互成角度的两个共点遵循平行四边形定则;。

2、培养学生动手操作能力;。

情感目标。

培养学生的物理思维能力和科学研究的态度。

教学建议。

教学重点难点分析。

1、本课的重点是通过实验归纳出力的平行四边形法则,这同时也是本章的重点.

2、对物体进行简单的受力分析、通过作图法确定合力是本章的难点;。

教法建议。

一、共点力概念讲解的教法建议。

关于共点力的概念讲解时需要强调不仅作用在物体的同一点的力是共点力,力的作用线相交于一点的也叫共点力.注意平行力于共点力的区分(关于平行请参考扩展资料中的“平行与分解”),教师讲解示例中要避开这例问题.

二、关于矢量合成讲解的教法建议。

本课的重点是通过实验归纳出力的平行四边形法则,这同时也是本章的重点.由于学生刚开始接触矢量的运算方法,在讲解中需要从学生能够感知和理解的日常现象和规律出发,理解合力的概念,从实验现象总结出规律,由于矢量的运算法则是矢量概念的核心内容,又是学习物理学的基础,对于初上高中的学生来说,是一个大的飞跃,因此教学时,教师需要注意规范性,但是不必操之过急,通过一定数量的题目强化学生对平行四边形定则的认识.

由于与分解的基础首先是对物体进行受力分析,在前面力的知识学习中,学生已经对单个力的分析过程有了比较清晰的认识,在知识的整合过程中,教师可以通过练习做好规范演示.

三、关于作图法求解几个共点力合力的教法建议。

1、在讲解用作图法求解共点力合力时,可以在复习力的图示法基础上,让学生加深矢量概念的理解,同时掌握矢量的计算法则.

2、注意图示画法的规范性,在本节可以配合学生自主实验进行教学.

第四节与分解。

教学设计过程:

一、复习提问:

1、什么是力?

2、力产生的效果跟哪些因素有关?

教师总结,并引出新课内容.

二、新课引入:

1、通过对初中学过的单个力产生的效果,与两个力共同作用的效果相同,引出共点力、合力和分力的概念,同时出示教学图片,如:两个人抬水、拉纤或拔河的图片.(图片可以参见多媒体素材中的图形图像)。

2、提问1:已知同一直线上的两个力f1、f2的大小分别为50n、80n,如果两个力的方向相同,其合力大小是多少?合力的方向怎样?(教师讲解时注意强调:‘描述力的时候,要同时说明大小和方向,体现力的矢量性’)。

教师引导学生得到正确答案后,总结出“同一直线上二力合成”的规律:

物体受几个力共同作用,我们可以用一个力代替这几个力共同作用,其效果完全相同,这个力叫那几个力的合力.已知几个力,求它们的合力叫.

指明:

(1)、同一直线上,方向相同的两个力的合力大小等于这两个力大小之和,方向跟这两个力的方向相同.

(2)、同一直线上,方向相反的两个力的合力大小等于这两个力大小之差,合力的方向跟较大的力方向相同.

4、提问3、若两个力不在同一直线上时,其合力大小又是多少?合力的方向怎样?

演示1:将橡皮筋固定在a点,演示用两个力f1、f2拉动橡皮筋到o点,再演示用f力将橡皮筋拉到o点,对比两次演示结果,运用力的图示法将力的大小方向表示出来,为了让学生更好的获得和理解力的平行四边性法则,在实验前,教师可以设计f1、f2的大小为3n和4n,两个力的夹角为90度,这样数学计算比较简单,学生很容易会发现f1、f2和f的关系满足勾股定理,进而得到力的平行四边性定则,教师总结:两个互成角度的力的合力,可以用表示这两个力的线段作邻边,作平行四边形,所夹的对角线就表示合力的大小和方向.

6、学生可以通过分组实验来验证力的平行四边性定则(可以参考多媒体资料中的视频试验):

学生在教师的知道下,组装好试验设备,进行试验验证.

强调:需要记录的数据(弹簧秤的示数)和要作的标记(橡皮筋两次拉到的同一位置和两个分力的方向)。

7、教师总结:经过人们多次的、精细的试验,最后确认,对角线的长度、方向,跟合力的大小、方向一致,即对角线与合力重合,力和合成满足平行四边形法则.

8、让学生根据书中的提示自己推倒出合力与分力之间的关系式.

三、课堂小结。

探究活动。

关于“滑轮”问题的研究。

题目。

关于“滑轮”问题的研究。

内容。

在初中学习的有关滑轮问题后,对“定”、“动”滑轮作用的理解,尤其是动滑轮的使用时,是否一定省力?研究一下初中的物理课本,在什么条件下,应用动滑轮省力最多?观察生活中应用滑轮的实例,说出自己的心得,或以书面形式写出相关内容以及研究结果.

将本文的word文档下载到电脑,方便收藏和打印。

热力学第二定律的心得体会简短篇二

(2)知道。

(3)知道第二类永动机是不可能的。

(4)知道能量耗散。

建议。

教材分析。

分析一:本节内容首先由热现象的方向性,说明第二类永动机是不可能的,并在此基础上提出.

分析二:自然界中的能量是守恒的,但有些能量便于利用,而有些能量不便于利用,我们没办法将流失的内能重新收集起来加以利用,能量转化的方向性造成能源不可能“用之不完,取之不尽”.

教法建议。

建议:本节内容要求不高,只要求学生对有所了解,因此可采取学生自学,对难点简单引导的方法.

设计方案。

重点:知道热传导的方向性以及。

难点:

学生先自学,再难点简单引导、讲解.

探究活动。

题目:的发现过程。

组织:个人。

方案:科技小。

评价:的科普性。

热力学第二定律的心得体会简短篇三

【设计思想】:

1.教材分析:

功率是反映力做功快慢的物理量。功率的概念广泛应用与人们的日常生活和科技之中。学生在初中已经学过功率的概念,引入这一概念并不困难。教科书在本节中首先通过两台起重机做功相同,时间不同,引出功率的概念和定义式,并通过对动力机械的分析,讨论了额定功率和实际功率,最后,根据对物体做功的公式和运动学公式导出功率与速度的关系。

2.学情分析:

初中时学生已经学过功率的初步知识,前面一节学习了功的概念,为本节的教学奠定了一定的基础。在此基础上,进一步区分额定功率和实际功率,了解平均功率、瞬时功率。

3.设计思路:

本节讲述功率的概念,功率公式的应用。功率的概念、功率的物理意义是本节的重点内容,通过类比的方法,比较速度是描述位移变化快慢的物理量,来对功率进行理解。如果学生能懂得做功快慢表示的是能量转化的快慢,自然能感悟出功率实际上是描述能量转化快慢的物理量。要使学生确切地理解公式p=fv的意义,要通过例题的教学,使学生会应用基本公式进行计算,对平均功率和瞬时功率有所理解。

瞬时功率的概念学生较难理解,这是难点。学生往往认为,在某瞬时物体没有位移就没有做功问题,更谈不上功率了。如果学生没有认识到功率是描述能量转化快慢的物理量,这个难点就不易突破,因此,在前面讲清楚功率的物理意义很有必要,它是理解瞬时功率概念和物理意义的基础。

关于发动机的额定功率与汽车的最大速率之间的关系,采用公式分析加图像表述的形式进行,以便通过分析汽车由开动到匀速行驶的物理过程,使学生养成分析物理过程的习惯,避免简单地套用公式。

【教学目标】:

知识与技能。

1.理解功率的的概念。

2.知道功率的定义和定义式,能够用公式解答有关的问题。

3.正确理解公式p=fv的意义,区别什么是瞬时功率,什么是平均功率,并能用来解释现象和进行计算。

4.能用公式p=fv讨论汽车等交通工具的启动问题。

过程与方法。

通过实例体验功率概念的形成过程及功率的实际意义,理解功率概念。

从功率概念的定义,体会用比值方法建立物理概念的方法。

理解功率与力和速度的关系。会利用功率的两个公式来解释现象和进行计算。

情感态度与价值观。

通过功率概念建立的探究过程,培养学生敢于发表自己的观点,坚持原则,善于合作的良好习惯。

通过对生活中机械的实际功率、额定功率的观察和测量,培养学生积极思考并学以致用的思想。

【学习重难点】:

1.功率的概念和计算公式。

2.p=fv及其应用。

【学习方法】:类比学习、图像分析。

【课时安排】:2课时。

热力学第二定律的心得体会简短篇四

热力学第二定律是热力学领域中的一条基本原理,它描述了热现象中的方向性,给了不可逆过程的判据。在我的学习和实践中,我对热力学第二定律有了更深刻的理解和体会。本文将以“什么是热力学第二定律”、“热力学第二定律的应用”、“热力学第二定律的启示”、“热力学第二定律的局限性”和“热力学第二定律的鉴定和改进”为五段,展开对热力学第二定律的心得体会。

首先,什么是热力学第二定律。热力学第二定律提出了自然界中热现象发生的方向性,即热量自高温物体传递到低温物体,而不能反过来,这个过程可以通过熵的概念来解释。熵是描述系统无序程度的物理量,熵的增加代表着系统无序性的增加,而自然界本身具有一种趋向于增加无序性的倾向。热力学第二定律的提出使得热现象和熵的概念得以统一,从而揭示了热现象发生的客观规律。

其次,热力学第二定律的应用非常广泛。在能源工程领域,热力学第二定律可以用来指导能源的高效利用。例如,在汽车发动机中,热力学第二定律告诉我们不能将热能的全部转化为功,必然会有一部分热能以废热的形式散失,因此我们应该通过提高工作温度或减少排放来提高热能利用率。在环境保护方面,热力学第二定律也起到了重要的作用。热力学第二定律告诉我们热量的自然流动方向,因此我们可以利用它来设计和改进热泵、制冷技术等,减少对环境的负面影响。

热力学第二定律的应用不仅局限于能源工程和环境保护领域,还可以应用于其他各个领域。在社会经济中,热力学第二定律可以用来解释资源的有限性和分配的公平性问题。通过分析不同资源的熵值,我们可以评估资源的稀缺程度,并寻找合理的资源配置方案。在生物学中,热力学第二定律可以解释生物体的存活和繁衍问题。根据热力学第二定律,生物体必须通过对外界环境的热交换来维持自身的正常生理活动,从而保持体内的熵低于外界环境,这就是我们常说的“低熵状态”。热力学第二定律对于理解生物体内部调节机制和生物进化过程有重要意义。

然而,热力学第二定律也存在一定的局限性。在实际的热现象中,由于操作条件的限制和设备的不完美,有些过程并不完全符合热力学第二定律。例如,热传导中可能存在微观颗粒运动的逆向现象;另外,热力学第二定律基于平衡态的假设,而在实际的非平衡态过程中,热力学第二定律的应用可能会受到一定的限制。因此,对于这些特殊情况,我们需要进行合理的修正和探索。

最后,热力学第二定律的鉴定和改进是一个长期的研究课题。为了更好地理解热力学第二定律,科学家们不断进行实验和观测,提出了许多理论和模型。其中,关于热力学第二定律和统计物理的关系是一个重要的研究方向。通过统计物理的方法,我们可以从宏观和微观两个层次上理解热力学第二定律,揭示其深层的内涵和物理机制。此外,还有一些新的热力学第二定律的形式被提出,如结构热力学第二定律和信息热力学第二定律。这些新的定律为我们提供了更加全面和深入的认识热力学第二定律。

总之,热力学第二定律是热力学领域中一条重要的基本原理,对于解释和指导热现象有着重要的意义。通过对热力学第二定律的学习和实践,我对其有了更深刻的理解和体会。热力学第二定律的应用广泛,不仅可以指导能源工程和环境保护,还可以应用于社会经济和生物学等各个领域。然而,热力学第二定律也存在一定的局限性,需要与实际情况相结合进行修正和改进。通过不断的研究和探索,我们可以更全面地认识和运用热力学第二定律,为人类社会的可持续发展做出更多的贡献。

热力学第二定律的心得体会简短篇五

(1)知道宏观热学过程的方向性。

(3)知道第二类永动机是不可能的。

(4)知道能量耗散。

教材分析。

教法建议。

教学设计方案。

学生先自学,教师再难点简单引导、讲解.。

探究活动。

组织:个人。

方案:科技小论文。

评价:论文的科普性。

热力学第二定律的心得体会简短篇六

19世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。

1824年,法国陆军工程师卡诺在他发表的论文论火的动力中提出了著名的卡诺定理,找到了提高热机效率的根本途径。但卡诺在当时是采用热质说的错误观点来研究问题的。从1840年到1847年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。热动说的正确观点也普遍为人们所接受。1848年,开尔文爵士(威廉汤姆生)根据卡诺定理,建立了热力学温标(绝对温标)。它完全不依赖于任何特殊物质的物理特性,从理论上解决了各种经验温标不相一致的缺点。这些为热力学第二定律的建立准备了条件。

1850年,克劳修斯从热动说出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的'初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的克劳修斯表述。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的开尔文表述。

上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。

热力学第二定律的心得体会简短篇七

热力学第二定律是热力学中的一条基本规律,对于人类在能量转化和利用方面具有重要意义。本文将从热力学第二定律的定义、解释和应用三个方面,探讨其在实际生活和工作中的心得体会。

首先,热力学第二定律指出了自然界中热能传递的方向性问题,即热自然从高温物体传递到低温物体。这一定律实际上揭示了自然界中能量转化的一般规律,人们在研究各种热力学系统时,可以根据热力学第二定律的指导,准确地预测或分析该系统的热能变化。例如,当我们研究一个封闭系统的热能转化过程时,可以根据热力学第二定律,判断热能是否会自发地从高温部分转移到低温部分,从而预测系统的热平衡态。

其次,热力学第二定律的解释在于熵的概念。熵被视为系统无序状态的度量,它越大表示系统越无序,越小表示系统越有序。热力学第二定律可以用熵的增加原理来解释,即在孤立系统内,熵的增加是不可逆过程的特点。这可以从日常生活中的例子得到佐证,比如,我们将一杯热水放置在室温下,热水会逐渐变凉,而周围的热量会逐渐传递给水,增加水分子运动的无序性,熵也逐渐增加。这个过程是不可逆的,因为在自然界中,无论我们如何努力,都无法将热能自发地从冷物体传递到热物体。

最后,热力学第二定律的应用在于能源转化和利用。能源是现代社会发展的关键基础,而热能转化和利用又是能源的重要组成部分。热力学第二定律的应用可以帮助我们合理选择和利用能源。例如,在汽车发动机中,燃料的热能转化为机械能,而在这个过程中,不可避免地会产生大量的热量损失。热力学第二定律告诉我们,这些损失是不可避免的,我们需要通过提高发动机效率来减少能源的浪费。又如太阳能电池板将太阳能转化为电能,热力学第二定律则告诉我们,将所有太阳能转化为电能是不可能的,我们应该通过改进设备和技术,提高转化效率。

总结起来,热力学第二定律是热力学中的重要定律,它指导了人们在热能转化和利用方面的研究和实践。通过热力学第二定律的解释和应用,我们可以更好地理解自然界中能量转化的规律,并且在实际生活和工作中合理选择和利用能源。热力学第二定律的探索与发展将继续促使人类在能源领域取得更大的进步,为社会的可持续发展做出更大的贡献。

热力学第二定律的心得体会简短篇八

(3)知道第二类永动机是不可能的。

(4)知道能量耗散。

建议。

教材分析。

分析一:本节内容首先由热现象的方向性,说明第二类永动机是不可能的,并在此基础上提出热力学第二定律.

分析二:自然界中的能量是守恒的,但有些能量便于利用,而有些能量不便于利用,我们没办法将流失的内能重新收集起来加以利用,能量转化的方向性造成能源不可能“用之不完,取之不尽”.

教法建议。

建议:本节内容要求不高,只要求学生对热力学第二定律有所了解,因此可采取学生自学,对难点简单引导的方法.

设计方案。

学生先自学,再难点简单引导、讲解.

探究活动。

组织:个人。

方案:科技小。

评价:的科普性。

热力学第二定律的心得体会简短篇九

热力学第二定律是热力学的核心定律之一,它揭示了自然界中热量的流动方向以及能量转化的不可逆性。作为物理学中的重要概念,热力学第二定律给我带来了诸多思考和体会。在研究和学习的过程中,我深刻认识到热力学第二定律在自然界中的普遍适用性以及对人类生活的重要意义。

首先,热力学第二定律揭示了自然界中热量的流动方向。根据第二定律,热量从高温物体自发地流向低温物体,而不会出现反向的现象。这是因为高温物体的分子具有更高的平均能量,分子之间的热运动更加剧烈,从而导致热量向低温物体转移。这一定律对于我们理解自然界中的现象至关重要,比如为什么冷水会被加热、为什么热水会自然冷却等等。通过深入研究这一定理,我认识到自然界中的物质从有序向无序的演化过程是不可逆的,这反映了宇宙的趋势和规律。

其次,热力学第二定律揭示了能量转化的不可逆性。能量在转化的过程中,总是会存在能量的损耗和转化过程中的能量无法完全转化成有用的能量。这表现为在能量转化的过程中有一些熵的增加的现象。熵增就意味着系统的无序性的增加,也意味着有用能量的减少。这一定律对于我们认识能量转化的规律以及能源的有效利用具有重要的意义。我们需要通过降低能量转化的损耗和提高能量利用率来提高系统的效率,在实际生活和工作中,这对于我们节约能源、保护环境、提高经济效益都具有重要的指导作用。

此外,热力学第二定律的研究对于科学技术的发展也具有重要的推动作用。正是热力学第二定律的揭示,使得工程师和科学家们能够设计出高效的热机和能量转换装置,实现能源的合理利用。例如,汽车引擎、发电厂的设计和优化都离不开热力学第二定律的指导。通过理解和应用热力学第二定律,我们可以提高能源的转化效率,减少能源的浪费,为人类的可持续发展做出贡献。

最后,热力学第二定律对于我们个体的生活也有重要的启示。在我们的生活中也存在能量转化的过程,例如我们的身体机能的消耗和补充,以及日常生活中的能源利用等。热力学第二定律告诉我们要合理规划和利用我们的能量,避免能量浪费和精力的消耗。只有在合理运用能量的前提下,我们才能够更好地保持身心的健康,提高工作和生活的效率。

总而言之,热力学第二定律是自然界中能量转化不可逆性的核心定律,它在自然科学的发展和人类生活的各个方面都具有重要的意义。通过深入研究和学习热力学第二定律,我在多个层面上认识到了它的普遍适用性和实践价值。在今后的学习和工作中,我将继续深入研究和应用热力学第二定律,为能源转化与利用、环境保护和可持续发展做出贡献。

热力学第二定律的心得体会简短篇十

课时:1课时。

课堂类型:造型表现。

教学目标:

1、通过对微观世界的认识、了解,引导学生从不同角度来省视、探究事物的另一构造世界,培养学生细致观察的习惯。

2、让学生尝试运用不同的表现方式,自由表达自己领略到的微观世界画面,体验观察与绘画的乐趣。

3、提高学生对抽象美的认识和熏陶。

教学重难点:

1、微观事物的细致观察与表现。

2、微观世界的表现。

教具学具:显微镜、放大镜、可观察的动植物图片及实物。

教学过程:

一、组织教学:

二、讲授新课:

(一)引导阶段。

2、欣赏与比较的几种方法。

由远到近的观察对比方法:

a、海星外在的整体形状是多角形刺状。

b、局部观察时面部凹凸有致。

c、在显微镜下表面呈各式星状且形态各异,还参差着无规则的小圆点。

剖面观察法:

b、螺是一种贝类海洋动物,其质的坚实外表由外往里是旋状纹样。横剖切后,是发射式渐变状,色彩也从蓝灰逐渐变成黄灰色。

(二)发展、表现阶段。

a、通过线条的粗细、蔬密、曲直组织,能表达出微观物体的运动态势。

b、以点的.大小为排列基数,通过运动轨迹来体现形象的节奏感。

c、运用色彩要素体现各种不同的色彩倾向或冷暖变化,使学生懂得色彩能传递人们的思想感情。

d、注入自身的情感,更能创造出美丽丰富的微观世界,并从美的角度进行塑造,使其更具艺术性。

三、布置课堂作业。

根据所观察的对象,用笔把见到的微观世界描绘下来。

四、学生作业,教师辅导。

五、作品展示与评价。

1、作品让学生通过教学多媒体开展自评、互评与师评活动。

2、谈运用哪些奇思妙想与作画方式来完成作业?

3、通过微观世界的观察与描绘你们有何收获?

六、教学廷伸与拓展。

通过仔细观察和大胆想象相结合,鼓励学生运用点、线、面和色彩方法来组织表现许多抽象作品,描绘出更多的微观世界画幅。

热力学第二定律的心得体会简短篇十一

物理是高中生学好高中的重要组成部分,学好直接影响着高中三年的成绩。下面是小编收集整理的物理热力学第二定律知识点整理归纳,希望大家喜欢!

19世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。

1824年,法国陆军工程师卡诺在他发表的论文论火的动力中提出了著名的卡诺定理,找到了提高热机效率的根本途径。但卡诺在当时是采用热质说的错误观点来研究问题的。从1840年到1847年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。热动说的正确观点也普遍为人们所接受。1848年,开尔文爵士(威廉汤姆生)根据卡诺定理,建立了热力学温标(绝对温标)。它完全不依赖于任何特殊物质的物理特性,从理论上解决了各种经验温标不相一致的缺点。这些为热力学第二定律的建立准备了条件。

1850年,克劳修斯从热动说出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的克劳修斯表述。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的开尔文表述。

上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。

1、可逆过程与不可逆过程

一个热力学系统,从某一状态出发,经过某一过程达到另一状态。若存在另一过程,能使系统与外界完全复原(即系统回到原来的状态,同时消除了原来过程对外界的一切影响),则原来的过程称为可逆过程。反之,如果用任何方法都不可能使系统和外界完全复原,则称之为不可逆过程。

可逆过程是一种理想化的抽象,严格来讲现实中并不存在(但它在理论上、计算上有着重要意义)。大量事实告诉我们:与热现象有关的实际宏观过程都是不可逆过程。

2、对于开氏与克氏的两种表述的分析

克氏表述指出:热传导过程是不可逆的。开氏表述指出:功变热(确切地说,是机械能转化为内能)的过程是不可逆的。

两种表述其实质就是分别挑选了一种典型的不可逆过程,指出它所产生的效果不论用什么方法也不可能使系统完全恢复原状,而不引起其他变化。

请注意加着重号的语句:而不引起其他变化。比如,制冷机(如电冰箱)可以将热量q由低温t2处(冰箱内)向高温t1处(冰箱外的外界)传递,但此时外界对制冷机做了电功w而引起了变化,并且高温物体也多吸收了热量q(这是电能转化而来的)。这与克氏表述并不矛盾。

3、不可逆过程的几个典型例子

例1(理想气体向真空自由膨胀)如图1所示,容器被中间的隔板分为体积相等的两部分:a部分盛有理想气体,b部分为真空。现抽掉隔板,则气体就会自由膨胀而充满整个容器。

例2(两种理想气体的扩散混合)如图2所示,两种理想气体c和d被隔板隔开,具有相同的温度和压强。当中间的隔板抽去后,两种气体发生扩散而混合。

例3焦耳的热功当量实验。

这是一个不可逆过程。在实验中,重物下降带动叶片转动而对水做功,使水的内能增加。但是,我们不可能造出这样一个机器:在其循环动作中把一重物升高而同时使水冷却而不引起外界变化。由此即可得热力学第二定律的普朗克表述。

再如焦耳—汤姆生(开尔文)多孔塞实验中的节流过程和各种爆炸过程等都是不可逆过程。

4、热力学第二定律的实质

对上面所列举的不可逆过程以及自然界中其他不可逆过程,我们完全能够由某一过程的不可逆性证明出另一过程的不可逆性,即自然界中的各种不可逆过程都是互相关联的。我们可以选取任一个不可逆过程作为表述热力学第二定律的基础。因此,热力学第二定律就可以有多种不同的表达方式。

但不论具体的表达方式如何,热力学第二定律的实质在于指出:一切与热现象有关的实际宏观过程都是不可逆的,并指出这些过程自发进行的'方向。

热现象是与大量分子无规则热运动相联系的。我们以上述不可逆过程(如例1中理想气体的真空自由膨胀)为例,来简单说明热力学第二定律的统计意义。

趣的比喻:假若从动物园中逃出一只黑猩猩,溜进了计算机室,用爪子在键盘上乱按。而将打印出的纸张按顺序装订,恰巧是一部数百万字的巨著大英百科全书。上述几率比这个笑话的几率还要小得不可比拟。

通过对上述简单例子的分析,事实上是有一般意义的,即热力学第二定律的统计意义是:一个不受外界影响的孤立系统,其内部发生的过程,总是由几率小的状态向几率大的状态进行,由包含微观状态数目少的宏观状态向包含微观状态数目多的宏观状态进行。

(1)热力学第二定律是宏观规律,对少量分子组成的微观系统是不适用的。

(2)热力学第二定律适用于绝热系统或孤立系统,对于生命体(开放系统)是不适用的。早在1851年开尔文在叙述热力学第二定律时,就曾特别指明动物体并不像一架热机一样工作,热力学第二定律只适用于无生命物质。

(3)热力学第二定律是建筑在有限的空间和时间所观察到的现象上,不能被外推应用于整个宇宙。19世纪后半期,有些科学家错误地把热力学第二定律应用到无限的、开放的宇宙,提出了所谓热寂说。他们声称:将来总有一天,全宇宙都是要达到热平衡,一切变化都将停止,从而宇宙也将死亡。要使宇宙从平衡状态重新活动起来,只有靠外力的推动才行。这就会为上帝创造世界等唯心主义提供了所谓科学依据。

热寂说的荒谬,在于把无限的、开放的宇宙当做热力学中所说的孤立系统。热力学中的孤立系统与无所不包、完全没有外界存在的整个宇宙是根本不同的。事实上,科学后来的发展已经提供了许多事实,证明宇宙演变的过程不遵守热力学第二定律。正如恩格斯在《自然辩证法》中指出了热寂说的谬误。他根据物质运动不灭的原理,深刻地指出:放射到太空中去的热一定有可能通过某种途径指明这一途径,将是以后自然科学的课题转变为另一运动形式,在这种运动形式中,它能重新集结和活动起来。热力学第二定律和热力学第一定律一样,是实践经验的总结,它的正确性是由它的一切推论都为实践所证实而得到肯定的。

以上是高二物理必修知识点:物理热力学第二定律。

您可能关注的文档